Highest vectors of representations (total 13) ; the vectors are over the primal subalgebra. | \(-g_{-1}+g_{-4}\) | \(h_{4}+h_{1}\) | \(-g_{4}+g_{1}\) | \(-g_{3}+g_{2}\) | \(-g_{8}+g_{6}\) | \(g_{18}+g_{17}\) | \(g_{19}\) | \(-g_{11}+g_{10}\) | \(g_{21}\) | \(g_{22}\) | \(g_{23}\) | \(g_{24}\) | \(g_{25}\) |
weight | \(0\) | \(0\) | \(0\) | \(\omega_{2}\) | \(\omega_{2}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{2}\) | \(2\omega_{1}+\omega_{2}\) | \(2\omega_{1}+\omega_{2}\) | \(2\omega_{1}+2\omega_{2}\) | \(2\omega_{1}+2\omega_{2}\) | \(2\omega_{1}+2\omega_{2}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(-2\psi\) | \(0\) | \(2\psi\) | \(\omega_{2}-\psi\) | \(\omega_{2}+\psi\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{2}\) | \(2\omega_{1}+\omega_{2}-\psi\) | \(2\omega_{1}+\omega_{2}+\psi\) | \(2\omega_{1}+2\omega_{2}-2\psi\) | \(2\omega_{1}+2\omega_{2}\) | \(2\omega_{1}+2\omega_{2}+2\psi\) |
Isotypical components + highest weight | \(\displaystyle V_{-2\psi} \) → (0, 0, -2) | \(\displaystyle V_{0} \) → (0, 0, 0) | \(\displaystyle V_{2\psi} \) → (0, 0, 2) | \(\displaystyle V_{\omega_{2}-\psi} \) → (0, 1, -1) | \(\displaystyle V_{\omega_{2}+\psi} \) → (0, 1, 1) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0) | \(\displaystyle V_{2\omega_{2}} \) → (0, 2, 0) | \(\displaystyle V_{2\omega_{1}+\omega_{2}-\psi} \) → (2, 1, -1) | \(\displaystyle V_{2\omega_{1}+\omega_{2}+\psi} \) → (2, 1, 1) | \(\displaystyle V_{2\omega_{1}+2\omega_{2}-2\psi} \) → (2, 2, -2) | \(\displaystyle V_{2\omega_{1}+2\omega_{2}} \) → (2, 2, 0) | \(\displaystyle V_{2\omega_{1}+2\omega_{2}+2\psi} \) → (2, 2, 2) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | \(W_{12}\) | \(W_{13}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
|
|
| Semisimple subalgebra component.
|
| Semisimple subalgebra component.
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(0\) | \(0\) | \(\omega_{2}\) \(-\omega_{2}\) | \(\omega_{2}\) \(-\omega_{2}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{1}+\omega_{2}\) \(\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(-\omega_{2}\) \(-2\omega_{1}-\omega_{2}\) | \(2\omega_{1}+\omega_{2}\) \(\omega_{2}\) \(2\omega_{1}-\omega_{2}\) \(-2\omega_{1}+\omega_{2}\) \(-\omega_{2}\) \(-2\omega_{1}-\omega_{2}\) | \(2\omega_{1}+2\omega_{2}\) \(2\omega_{2}\) \(2\omega_{1}\) \(-2\omega_{1}+2\omega_{2}\) \(0\) \(2\omega_{1}-2\omega_{2}\) \(-2\omega_{1}\) \(-2\omega_{2}\) \(-2\omega_{1}-2\omega_{2}\) | \(2\omega_{1}+2\omega_{2}\) \(2\omega_{2}\) \(2\omega_{1}\) \(-2\omega_{1}+2\omega_{2}\) \(0\) \(2\omega_{1}-2\omega_{2}\) \(-2\omega_{1}\) \(-2\omega_{2}\) \(-2\omega_{1}-2\omega_{2}\) | \(2\omega_{1}+2\omega_{2}\) \(2\omega_{2}\) \(2\omega_{1}\) \(-2\omega_{1}+2\omega_{2}\) \(0\) \(2\omega_{1}-2\omega_{2}\) \(-2\omega_{1}\) \(-2\omega_{2}\) \(-2\omega_{1}-2\omega_{2}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(-2\psi\) | \(0\) | \(2\psi\) | \(\omega_{2}-\psi\) \(-\omega_{2}-\psi\) | \(\omega_{2}+\psi\) \(-\omega_{2}+\psi\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{2}\) \(0\) \(-2\omega_{2}\) | \(2\omega_{1}+\omega_{2}-\psi\) \(\omega_{2}-\psi\) \(2\omega_{1}-\omega_{2}-\psi\) \(-2\omega_{1}+\omega_{2}-\psi\) \(-\omega_{2}-\psi\) \(-2\omega_{1}-\omega_{2}-\psi\) | \(2\omega_{1}+\omega_{2}+\psi\) \(\omega_{2}+\psi\) \(2\omega_{1}-\omega_{2}+\psi\) \(-2\omega_{1}+\omega_{2}+\psi\) \(-\omega_{2}+\psi\) \(-2\omega_{1}-\omega_{2}+\psi\) | \(2\omega_{1}+2\omega_{2}-2\psi\) \(2\omega_{2}-2\psi\) \(2\omega_{1}-2\psi\) \(-2\omega_{1}+2\omega_{2}-2\psi\) \(-2\psi\) \(2\omega_{1}-2\omega_{2}-2\psi\) \(-2\omega_{1}-2\psi\) \(-2\omega_{2}-2\psi\) \(-2\omega_{1}-2\omega_{2}-2\psi\) | \(2\omega_{1}+2\omega_{2}\) \(2\omega_{2}\) \(2\omega_{1}\) \(-2\omega_{1}+2\omega_{2}\) \(0\) \(2\omega_{1}-2\omega_{2}\) \(-2\omega_{1}\) \(-2\omega_{2}\) \(-2\omega_{1}-2\omega_{2}\) | \(2\omega_{1}+2\omega_{2}+2\psi\) \(2\omega_{2}+2\psi\) \(2\omega_{1}+2\psi\) \(-2\omega_{1}+2\omega_{2}+2\psi\) \(2\psi\) \(2\omega_{1}-2\omega_{2}+2\psi\) \(-2\omega_{1}+2\psi\) \(-2\omega_{2}+2\psi\) \(-2\omega_{1}-2\omega_{2}+2\psi\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{-2\psi}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\psi}\) | \(\displaystyle M_{\omega_{2}-\psi}\oplus M_{-\omega_{2}-\psi}\) | \(\displaystyle M_{\omega_{2}+\psi}\oplus M_{-\omega_{2}+\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{1}+\omega_{2}-\psi}\oplus M_{\omega_{2}-\psi}\oplus M_{2\omega_{1}-\omega_{2}-\psi}\oplus M_{-2\omega_{1}+\omega_{2}-\psi} \oplus M_{-\omega_{2}-\psi}\oplus M_{-2\omega_{1}-\omega_{2}-\psi}\) | \(\displaystyle M_{2\omega_{1}+\omega_{2}+\psi}\oplus M_{\omega_{2}+\psi}\oplus M_{2\omega_{1}-\omega_{2}+\psi}\oplus M_{-2\omega_{1}+\omega_{2}+\psi} \oplus M_{-\omega_{2}+\psi}\oplus M_{-2\omega_{1}-\omega_{2}+\psi}\) | \(\displaystyle M_{2\omega_{1}+2\omega_{2}-2\psi}\oplus M_{2\omega_{2}-2\psi}\oplus M_{2\omega_{1}-2\psi}\oplus M_{-2\omega_{1}+2\omega_{2}-2\psi} \oplus M_{-2\psi}\oplus M_{2\omega_{1}-2\omega_{2}-2\psi}\oplus M_{-2\omega_{1}-2\psi}\oplus M_{-2\omega_{2}-2\psi}\oplus M_{-2\omega_{1}-2\omega_{2}-2\psi}\) | \(\displaystyle M_{2\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{2\omega_{1}}\oplus M_{-2\omega_{1}+2\omega_{2}}\oplus M_{0}\oplus M_{2\omega_{1}-2\omega_{2}} \oplus M_{-2\omega_{1}}\oplus M_{-2\omega_{2}}\oplus M_{-2\omega_{1}-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{1}+2\omega_{2}+2\psi}\oplus M_{2\omega_{2}+2\psi}\oplus M_{2\omega_{1}+2\psi}\oplus M_{-2\omega_{1}+2\omega_{2}+2\psi} \oplus M_{2\psi}\oplus M_{2\omega_{1}-2\omega_{2}+2\psi}\oplus M_{-2\omega_{1}+2\psi}\oplus M_{-2\omega_{2}+2\psi}\oplus M_{-2\omega_{1}-2\omega_{2}+2\psi}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{-2\psi}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{2\psi}\) | \(\displaystyle M_{\omega_{2}-\psi}\oplus M_{-\omega_{2}-\psi}\) | \(\displaystyle M_{\omega_{2}+\psi}\oplus M_{-\omega_{2}+\psi}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{2}}\oplus M_{0}\oplus M_{-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{1}+\omega_{2}-\psi}\oplus M_{\omega_{2}-\psi}\oplus M_{2\omega_{1}-\omega_{2}-\psi}\oplus M_{-2\omega_{1}+\omega_{2}-\psi} \oplus M_{-\omega_{2}-\psi}\oplus M_{-2\omega_{1}-\omega_{2}-\psi}\) | \(\displaystyle M_{2\omega_{1}+\omega_{2}+\psi}\oplus M_{\omega_{2}+\psi}\oplus M_{2\omega_{1}-\omega_{2}+\psi}\oplus M_{-2\omega_{1}+\omega_{2}+\psi} \oplus M_{-\omega_{2}+\psi}\oplus M_{-2\omega_{1}-\omega_{2}+\psi}\) | \(\displaystyle M_{2\omega_{1}+2\omega_{2}-2\psi}\oplus M_{2\omega_{2}-2\psi}\oplus M_{2\omega_{1}-2\psi}\oplus M_{-2\omega_{1}+2\omega_{2}-2\psi} \oplus M_{-2\psi}\oplus M_{2\omega_{1}-2\omega_{2}-2\psi}\oplus M_{-2\omega_{1}-2\psi}\oplus M_{-2\omega_{2}-2\psi}\oplus M_{-2\omega_{1}-2\omega_{2}-2\psi}\) | \(\displaystyle M_{2\omega_{1}+2\omega_{2}}\oplus M_{2\omega_{2}}\oplus M_{2\omega_{1}}\oplus M_{-2\omega_{1}+2\omega_{2}}\oplus M_{0}\oplus M_{2\omega_{1}-2\omega_{2}} \oplus M_{-2\omega_{1}}\oplus M_{-2\omega_{2}}\oplus M_{-2\omega_{1}-2\omega_{2}}\) | \(\displaystyle M_{2\omega_{1}+2\omega_{2}+2\psi}\oplus M_{2\omega_{2}+2\psi}\oplus M_{2\omega_{1}+2\psi}\oplus M_{-2\omega_{1}+2\omega_{2}+2\psi} \oplus M_{2\psi}\oplus M_{2\omega_{1}-2\omega_{2}+2\psi}\oplus M_{-2\omega_{1}+2\psi}\oplus M_{-2\omega_{2}+2\psi}\oplus M_{-2\omega_{1}-2\omega_{2}+2\psi}\) |
2 & | 0\\ |
0 & | 2\\ |